Game Theory

Chapter 12

1 Introduction

- Game theory helps to model \qquad behavior by agents who understand that their actions affect the actions of other agents.
- Game theory applications
- the study of \qquad (industries containing only a few firms)
- the study of \qquad e.g., OPEC
- the study of \qquad e.g., using a common resource such as a fishery
- the study of \qquad strategies
- \qquad
- how \qquad work
- A game consists of
- a set of \qquad
* A game with just two players is a \qquad game.
- a set of \qquad for each player
- the \qquad to each player for every possible choice of strategies by the players.

1.1 Our First Game

- The players are called A and B.
- Player A has two actions, called \qquad and \qquad
- Player B has two actions, called \qquad and \qquad
- The table showing the payoffs to both players for each of the four possible action combinations is the game's payoff matrix.
Player B

	Left	Right		
Top	3	9	2	8
Bottom	0	2	1	1

-What do you think would happen if we played this game?

- Notice that no matter what player B does (L or R), player A is better off choosing \qquad .
* This is an example of a \qquad strategy. A dominant strategy is a strategy for a player that is \qquad no matter what the other player does.
* In this example, \qquad is a dominant strategy for A.
* Similarly, \qquad is a dominant strategy for B.

1.2 Our Second Game

> Player B

Player A	Top	Left		Right	
		3	9	1	8
	Bottom	0	0	2	1

-What do you think would happen if we played this game?

- Is (T, R) a likely play?
* If B plays right then A's best reply is \qquad since this improves A's pay-off from \qquad .
* (T, R) is \qquad a likely play.
- Is (B, R) a likely play?
* If B plays right then A's best reply is \qquad and if A plays bottom, B's best reply is \qquad
* (B, R) is a \qquad play.
- Is (B,L) a likely play?
* If A plays bottom then B's best reply is \qquad .
* (B, L) is \qquad a likely play.
- Is (T, L) a likely play?
* If B plays left then A's best reply is \qquad and if A plays top, B's best reply is \qquad .
* (T, L) is a \qquad play.
- Nash Equilibrium
- A play of the game where each strategy is a \qquad reply to the other is a Nash equilibrium (NE).
* Another way to define NE: the set of strategies that are \qquad , given what the other player is \qquad .
- Our example has two Nash equilibria: \qquad and \qquad .

2 The Prisoner's Dilemma

- To see if \qquad -preferred outcomes must be what we see in the play of a game, consider the famous example called the prisoner's dilemma game.
- The game
- Two players: \qquad and \qquad
- Both have been arrested and taken into questioning. Each have two choices:
* Stay \qquad
*

- The Pay-off matrix

> Clyde

	Silent		Confess	
Silent	-5	-5	-30	-1
Confess	-1	-30	-10	-10

-What plays are we likely to see for this game?

- If Bonnie stays silent, then Clyde's best response is to \qquad (\qquad).
- If Bonnie confesses, Clyde's best response is still to \qquad () .
- \qquad is true for Bonnie.
* Both player's dominant strategy is to \qquad .
- The Nash Equilibrium for this game is \qquad even though \qquad would yield better payoffs for both players.
- The Nash equilibrium here is \qquad .
- The players would be jointly \qquad off each remaining silent. But individual strategies and
\qquad lead them each to \qquad since it is a dominant strategy.

3 Repeated Games

- A strategic game is a \qquad game if it is played once in each of a number of periods.
- What strategies are sensible for the players depends greatly on whether the game
- is repeated over only a \qquad number of periods, or
- is repeated over an \qquad number of periods.

3.1 Finitely Repeated Games

		Silent		Confess	
	Bonne	Silent	-5	-5	-30
	Confess	-1			
		-1	-30	-10	-10

- Suppose we have our Bonnie and Clyde Prisoner's dilemma game, but this time it will be repeated for periods. What is the likely outcome?
- Suppose the start of period $t=3$ has been reached (i.e., the game has already been played twice). Both should choose \qquad .
- Now suppose the start of period $t=2$ has been reached. Clyde and Bonnie expect each will choose
\qquad next period. Both should choose \qquad .
- At the start of period $t=1$ Clyde and Bonnie both expect that each will choose \qquad in each of the next two periods. Both should choose \qquad .
- The only \qquad (\qquad perfect) NE for this game is where both Clyde and Bonnie choose
\qquad in every period. This is true even if the game is repeated for a \qquad , but still number of periods.

3.2 Infinitely Repeated Games

- If the prisoners dilemma game is repeated for an \qquad number of periods then the game has a huge number of credible NE.
- \qquad forever is one such NE.
- But \qquad can also be a NE because a player can \qquad the other for not cooperating (i.e., for choosing confess).

4 Who Plays When

- In our previous examples the players chose their strategies \qquad .
- Such games are \qquad games.
- But there are other games in which one player plays \qquad another player.
- Such games are \qquad games.
- The player who plays first is the \qquad . The player who plays second is the \qquad .
- Suppose we had our game from the second example:

> Player B

	Left	Right		
Top3 9 1				
Bottom	0	0	2	1

- But this time the game is played sequentially, with A leading and B following.
* We can rewrite the game in its \qquad form (sometimes called the \qquad
- Solving this kind of game requires a technique known as \qquad induction
- Even though A goes first, start by figuring out what \qquad would do for each possible choice \qquad could make.
* If A chooses Top, B would be better off choosing \qquad , since \qquad .
* If A chooses Bottom, B would be better off choosing \qquad since \qquad
- A knows what B will choose given A's choices, so A will choose \qquad because \qquad .

5 Pure Strategies

Player B

- Recall that this game has two Nash Equilibria: (T, L) and (B, R).
- Player A has been thought of as choosing to play either \qquad or \qquad but no
\qquad of both.
- Similarly, B has been playing either \qquad or \qquad but no \qquad of both.
- In other words, we would say that A is \qquad playing T or B, or T and B are player A's \qquad strategies.
- We have been thinking of each agent as choosing a strategy \qquad and \qquad I. That is, each agent is making one choice and \qquad to it.
- This means that (T, L) and (B, R) are \qquad strategy Nash equilibria.
* Must every game have at least one pure strategy Nash equilibria?

6 Mixed Strategies

- Do we always want to follow a \qquad strategy?
- Suppose we have the following game:

Player B

	Left		Right	
Top	1	2	0	4
Bottom	0	5	3	2

- Is there a pure strategy Nash Equilibrium? \qquad
- There is a \qquad strategy Nash equilibrium
- Instead of playing purely Top or Bottom, player A selects a probability distribution (\qquad), meaning that with probability \qquad player A will play Top and with probability \qquad will play Bottom.
* Player A is \qquad over the \qquad strategies top and bottom.
* The probability distribution (\qquad) is a mixed strategy for player A.
- Instead of playing purely Left or Right, player B selects a probability distribution (\qquad), meaning that with probability \qquad player B will play Left and with probability \qquad will play Right.
* Player B is \qquad over the \qquad strategies left and right.
* The probability distribution (\qquad) is a mixed strategy for player B.

Player B

	Left	Right		
Top1 2 0				
Bottom	0	5	3	2

- Solving for a mixed strategy Nash Equilibrium
- Player A knows that player B will play left with probability q and right with probability 1 - q.
* If player A plays Top, their expected pay-off is:
* If player A plays Bottom, their expected pay-off is:

* If \qquad A will choose only top. If \qquad , A will choose only bottom.
* If there is a Nash Equilibrium, player A must be \qquad between choosing top or bottom, therefore:

> Player B

Player A	Top	Left		Right	
		1	2	0	4
	Bottom	0	5	3	2

- Player B knows that play A will play top with probability p and bottom with probability $1-p$
* If player B plays left, their expected pay-off is:
* If player B plays right, their expected pay-off is:

* If \quad, B will choose only left and if ___ \quad B will choose only right.
* If there is a Nash equilibrium, then:

> Player B

Player A	Top	Left		Right	
		1	2	0	4
	Bottom	0	5	3	2

- The Nash Equilibrium for this game is A playing the mixed strategy \qquad and B playing the mixed strategy \qquad -.
* A's NE expected pay-off is:
* B's NE expected pay-off is:
- How Many Nash Equilibria?
- A game with a \qquad number of players, each with a finite number of \qquad strategies, has at least \qquad Nash equilibrium.
- So, if the game has \qquad pure strategy Nash equilibrium then it must have at least one strategy Nash equilibrium.

7 Best Response Functions

- In any Nash equilibrium (NE) each player chooses a \qquad response to the choices made by all of the other players. A game may have more than \qquad NE.
- How can we locate \qquad one of a game's Nash equilibria?
- If there is more than one NE , can we argue that one is more \qquad to occur than another?
- Think of a 2×2 game; in other words, a game with two players, A and B, each with two actions.
- A can choose between actions \qquad and \qquad _.
- B can choose between actions \qquad and \qquad .

Player B

Player A	a_{1}	b_{1}		b_{2}	
		6	4	3	5
	a_{2}	4	3	5	7

- We can draw best response curves for A and B :

- How can the player's best response curves be used to located the game's Nash Equilibria?
* Put one curve on top of the other.

- What if we allowed the players to \qquad their actions?
- p is the probability that A chooses action a_{1}.
- q is the probability that B chooses action b_{1}.
- What is the expected value of each action A could take?
- A is indifferent between the two choices if $E V\left(a_{1}\right)=E V\left(a_{2}\right)$:

- This implies that A's best response is:
- What is the expected value of each action B could take?
- B is indifferent between the two choices if $E V\left(b_{1}\right)=E V\left(b_{2}\right)$:
* p cannot be \qquad than 1.

- This implies that B's best response is:
- We can graph out both player's best response functions:

- Suppose we play a slightly different game.

Player B

Player A	a_{1}	b_{1}		b_{2}	
		6	4	3	1
	a_{2}	4	3	5	7

- Since the payoffs to A have not changed, the expected values of each action A could take are the same.
- $E V\left(a_{1}\right)=6 \times q+3 \times(1-q)=3+3 q$
- $E V\left(a_{2}\right)=4 \times q+5 \times(1-q)=5-q$
- A is indifferent between the two choices if $E V\left(a_{1}^{A}\right)=E V\left(a_{2}^{A}\right)$:

$$
\begin{aligned}
3+3 q & =5-q \\
2 & =4 q \\
q & =1 / 2
\end{aligned}
$$

- The best response function is the same as well:

$$
B R_{A}=\left\{\begin{array}{cc}
a_{1}(p=1) & \text { if } q>1 / 2 \\
a_{2}(p=0) & \text { if } q<1 / 2 \\
a_{1} \text { or } a_{2}(0 \leq p \leq 1) & \text { if } q=1 / 2
\end{array}\right.
$$

- What is the expected value of each action B could take?
- B is indifferent between the two choices if $E V\left(b_{1}\right)=E V\left(b_{2}\right)$:

- This implies that B's best response is:
- We can graph out the player's best response functions:

- There are three NE for this game: two pure NE and one mixed NE.

