Game Theory

Chapter 12

1 Introduction

- Game theory helps to model ______ behavior by agents who understand that their actions affect the actions of other agents.
- Game theory applications
 - the study of _____ (industries containing only a few firms)
 - the study of _____, e.g., OPEC
 - the study of _____, e.g., using a common resource such as a fishery
 - the study of ______ strategies
 - -
 - how _____ work
- A game consists of
 - a set of _____

* A game with just two players is a _____ game.

- a set of _____ for each player
- the ______ to each player for every possible choice of strategies by the players.

1.1 Our First Game

- The players are called A and B.
 - Player A has two actions, called ______ and _____
 - Player B has two actions, called _____ and _____
- The table showing the payoffs to both players for each of the four possible action combinations is the game's payoff matrix.

		Left		Right	
Player A	Тор	3	9	2	8
	Bottom	0	2	1	1

- What do you think would happen if we played this game?
 - Notice that no matter what player B does (L or R), player A is better off choosing ______.
 - * This is an example of a ______ strategy. A dominant strategy is a strategy for a player that is ______ no matter what the other player does.
 - * In this example, ______ is a dominant strategy for A.
 - * Similarly, ______ is a dominant strategy for B.

1.2 Our Second Game

Player B

		Le	əft	Riç	ght	
Player A	Тор	3	9	1	8	
	Bottom	0	0	2	1	
	vou think would		an if wa		hia anna	~?
- le (T	·R) a likely play	nappe 2	ennwe	played t	nis gam	3!
- 13 (1)	If B plays right	then A's	best rep	ly is		since this improves A's pay-off from
*	(T,R) is		a likely j	olay.		
– Is (B	,R) a likely play	/?		2		
*	If B plays right	then A's	best rep	ly is		and if A plays bottom, B's best reply is
*	(B,R) is a		_ play.			
– Is (B	,L) a likely play	?				
*	If A plays bott	om then	B's bes	t reply is		
*	(B,L) is		a likely	play.		
– Is (T	,L) a likely play	?				
*	lf B plays left th	nen A's b	est reply	/ is		and if A plays top, B's best reply is
*	(T,L) is a		_ play.			
• Nash Equ	uilibrium					
– A pl (NE)	lay of the gam).	e where	each st	rategy is	s a	reply to the other is a Nash equilibri
*	Another way to	o define	NE: the	set of str	rategies	that are, given what the other play

- Our example has two Nash equilibria: _____ and _____.

2 The Prisoner's Dilemma

- To see if ______-preferred outcomes must be what we see in the play of a game, consider the famous example called the prisoner's dilemma game.
- The game
 - Two players: _____ and _____
 - Both have been arrested and taken into questioning. Each have two choices:
 - * Stay_____

*____

• The Pay-off matrix

		Clyde					
		Silent		Cor	lfess		
nne	Silent	-5	-5	-30	-1		
	Confess	-1	-30	-10	-10		

- What plays are we likely to see for this game?
 - If Bonnie stays silent, then Clyde's best response is to _____ (_____).
 - If Bonnie confesses, Clyde's best response is still to ______ (_____).
 - _____ is true for Bonnie.

* Both player's dominant strategy is to _____.

- The Nash Equilibrium for this game is ______ even though ______ would yield better payoffs for both players.
 - The Nash equilibrium here is _____.
 - The players would be jointly ______ off each remaining silent. But individual strategies and ______ lead them each to ______ since it is a dominant strategy.

3 Repeated Games

- A strategic game is a ______ game if it is played once in each of a number of periods.
- What strategies are sensible for the players depends greatly on whether the game
 - is repeated over only a _____ number of periods, or
 - is repeated over an _____ number of periods.

3.1 Finitely Repeated Games

		Clyde				
		Si	lent	Cor	nfess	
Bonne	Silent	-5	-5	-30	-1	
	Confess	-1	-30	-10	-10	

- Suppose we have our Bonnie and Clyde Prisoner's dilemma game, but this time it will be repeated for _____ periods. What is the likely outcome?
 - Suppose the start of period t = 3 has been reached (i.e., the game has already been played twice).
 Both should choose ______.
 - Now suppose the start of period t = 2 has been reached. Clyde and Bonnie expect each will choose ______.
 - At the start of period t = 1 Clyde and Bonnie both expect that each will choose ______ in each of the next two periods. Both should choose ______.
- The only _____ (_____ perfect) NE for this game is where both Clyde and Bonnie choose _____ in every period. This is true even if the game is repeated for a _____, but still _____, number of periods.

3.2 Infinitely Repeated Games

- If the prisoners dilemma game is repeated for an _____ number of periods then the game has a huge number of credible NE.
 - _____ forever is one such NE.
 - But _____ can also be a NE because a player can _____ the other for not cooperating (i.e., for choosing confess).

4 Who Plays When

- In our previous examples the players chose their strategies ______.
 - Such games are _____ games.
- But there are other games in which one player plays ______ another player.
 - Such games are _____ games.
 - The player who plays first is the _____. The player who plays second is the _____.
- Suppose we had our game from the second example:

		Player B			
		Le	eft	Rig	ght
Player A	Тор	3	9	1	8
	Bottom	0	0	2	1

- But this time the game is played sequentially, with A leading and B following.

* We can rewrite the game in its _____ form (sometimes called the _____)

• Solving this kind of game requires a technique known as ______ induction

- Even though A goes first, start by figuring out what _____ would do for each possible choice _____ could make.
 - * If A chooses Top, B would be better off choosing _____, since _____,
 - * If A chooses Bottom, B would be better off choosing _____, since _____
- A knows what B will choose given A's choices, so A will choose ______ because ______.

5 Pure Strategies

Player B

		Le	eft	Rig	ght
Player A	Тор	3	9	1	8
	Bottom	0	0	2	1

- Recall that this game has two Nash Equilibria: (T,L) and (B,R).
 - Player A has been thought of as choosing to play either _____ or _____, but no _____ of both.
 - Similarly, B has been playing either _____ or _____, but no _____ of both.
- In other words, we would say that A is ______ playing T or B, or T and B are player A's ______ strategies.
 - We have been thinking of each agent as choosing a strategy ______ and _____ l. That is, each agent is making one choice and ______ to it.
 - This means that (T,L) and (B,R) are ______ strategy Nash equilibria.
 - * Must every game have at least one pure strategy Nash equilibria?

6 Mixed Strategies

- Do we always want to follow a ______ strategy?
- Suppose we have the following game:

		Le	Left		ght
Player A	Тор	1	2	0	4
	Bottom	0	5	3	2

- Is there a pure strategy Nash Equilibrium? _____
- There is a ______ strategy Nash equilibrium
 - Instead of playing purely Top or Bottom, player A selects a probability distribution (______), meaning that with probability _____ player A will play Top and with probability _____ will play Bottom.
 - * Player A is ______ over the ______ strategies top and bottom.
 - * The probability distribution (______) is a mixed strategy for player A.

- Instead of playing purely Left or Right, player B selects a probability distribution (______), meaning that with probability ______ player B will play Left and with probability ______ will play Right.
 - * Player B is ______ over the ______ strategies left and right.
 - * The probability distribution (_____) is a mixed strategy for player B.

- Solving for a mixed strategy Nash Equilibrium
 - Player A knows that player B will play left with probability q and right with probability 1 q.
 - * If player A plays Top, their expected pay-off is:
 - * If player A plays Bottom, their expected pay-off is:

Player B

		Le	eft	Rig	ght
Player A	Тор	1	2	0	4
	Bottom	0	5	3	2

- Player B knows that play A will play top with probability p and bottom with probability 1-p
 - \star If player B plays left, their expected pay-off is:
 - * If player B plays right, their expected pay-off is:

* If there is a Nash equilibrium, then:

		Le	eft	Right	
Player A	Тор	1	2	0	4
	Bottom	0	5	3	2

- The Nash Equilibrium for this game is A playing the mixed strategy ______ and B playing the mixed strategy _____.
 - $\star\,$ A's NE expected pay-off is:
 - * B's NE expected pay-off is:
- How Many Nash Equilibria?
 - A game with a ______ number of players, each with a finite number of ______ strategies, has at least ______ Nash equilibrium.
 - So, if the game has _____ pure strategy Nash equilibrium then it must have at least one _____ strategy Nash equilibrium.

7 Best Response Functions

- In any Nash equilibrium (NE) each player chooses a ______ response to the choices made by all of the other players. A game may have more than ______ NE.
 - How can we locate ______ one of a game's Nash equilibria?
 - If there is more than one NE, can we argue that one is more ______ to occur than another?
- Think of a 2×2 game; in other words, a game with two players, A and B, each with two actions.
 - A can choose between actions _____ and _____.
 - B can choose between actions _____ and _____.

	b	1	b_2		
a_1	6	4	3	5	
a_2	4	3	5	7	

- We can draw best response curves for A and B:

- How can the player's best response curves be used to located the game's Nash Equilibria?

- What if we allowed the players to ______ their actions?
 - p is the probability that A chooses action a_1 .
 - q is the probability that B chooses action b_1 .
- What is the expected value of each action A could take?

- A is indifferent between the two choices if $EV(a_1) = EV(a_2)$:

- This implies that A's best response is:

• What is the expected value of each action B could take?

– B is indifferent between the two choices if $EV(b_1) = EV(b_2)$:

* *p* cannot be _____ than 1.

- This implies that B's best response is:

• We can graph out both player's best response functions:

• Suppose we play a slightly different game.

- Since the payoffs to A have not changed, the expected values of each action A could take are the same.
 - $EV(a_1) = 6 \times q + 3 \times (1 q) = 3 + 3q$
 - $EV(a_2) = 4 \times q + 5 \times (1 q) = 5 q$
 - A is indifferent between the two choices if $EV(a_1^A) = EV(a_2^A)$:

- The best response function is the same as well:

$$BR_A = \begin{cases} a_1(p=1) & \text{if } q > 1/2 \\ a_2(p=0) & \text{if } q < 1/2 \\ a_1 \text{ or } a_2(0 \le p \le 1) & \text{if } q = 1/2 \end{cases}$$

• What is the expected value of each action B could take?

– B is indifferent between the two choices if $EV(b_1) = EV(b_2)$:

- This implies that B's best response is:

• We can graph out the player's best response functions:

- There are three NE for this game: two pure NE and one mixed NE.